close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > eess > arXiv:2504.06963

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Electrical Engineering and Systems Science > Audio and Speech Processing

arXiv:2504.06963 (eess)
[Submitted on 9 Apr 2025]

Title:RNN-Transducer-based Losses for Speech Recognition on Noisy Targets

Authors:Vladimir Bataev
View a PDF of the paper titled RNN-Transducer-based Losses for Speech Recognition on Noisy Targets, by Vladimir Bataev
View PDF HTML (experimental)
Abstract:Training speech recognition systems on noisy transcripts is a significant challenge in industrial pipelines, where datasets are enormous and ensuring accurate transcription for every instance is difficult. In this work, we introduce novel loss functions to mitigate the impact of transcription errors in RNN-Transducer models. Our Star-Transducer loss addresses deletion errors by incorporating "skip frame" transitions in the loss lattice, restoring over 90% of the system's performance compared to models trained with accurate transcripts. The Bypass-Transducer loss uses "skip token" transitions to tackle insertion errors, recovering more than 60% of the quality. Finally, the Target-Robust Transducer loss merges these approaches, offering robust performance against arbitrary errors. Experimental results demonstrate that the Target-Robust Transducer loss significantly improves RNN-T performance on noisy data by restoring over 70% of the quality compared to well-transcribed data.
Comments: Final Project Report, Bachelor's Degree in Computer Science, University of London, March 2024
Subjects: Audio and Speech Processing (eess.AS); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG); Sound (cs.SD)
Cite as: arXiv:2504.06963 [eess.AS]
  (or arXiv:2504.06963v1 [eess.AS] for this version)
  https://doi.org/10.48550/arXiv.2504.06963
arXiv-issued DOI via DataCite

Submission history

From: Vladimir Bataev [view email]
[v1] Wed, 9 Apr 2025 15:18:29 UTC (1,977 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled RNN-Transducer-based Losses for Speech Recognition on Noisy Targets, by Vladimir Bataev
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
eess.AS
< prev   |   next >
new | recent | 2025-04
Change to browse by:
cs
cs.AI
cs.CL
cs.LG
cs.SD
eess

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack