close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > astro-ph > arXiv:1402.0902

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Astrophysics > Solar and Stellar Astrophysics

arXiv:1402.0902 (astro-ph)
[Submitted on 4 Feb 2014]

Title:Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps

Authors:K. M. Maaskant, M. Min, L.B.F.M. Waters, A.G.G.M. Tielens
View a PDF of the paper titled Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps, by K. M. Maaskant and 3 other authors
View PDF
Abstract:Planet-forming disks of gas and dust around young stars contain polycyclic aromatic hydrocarbons (PAHs). We aim to characterize how the charge state of PAHs can be used as a probe of flows of gas through protoplanetary gaps. In this context, our goal is to understand the PAH spectra of four transitional disks. In addition, we want to explain the observed correlation between PAH ionization (traced by the 6.2/11.3 feature ratio) and the disk mass (traced by the 1.3 mm luminosity). We implement a model to calculate the charge state of PAHs in the radiative transfer code MCMax. The emission spectra and ionization balance are calculated. A benchmark modeling grid is presented that shows how PAH ionization and luminosity behave as a function of star and disk properties. The PAH ionization is most sensitive to ultraviolet (UV) radiation and the electron density. In optically thick disks, where the UV field is low and the electron density is high, PAHs are predominantly neutral. Ionized PAHs trace low-density optically thin disk regions where the UV field is high and the electron density is low. Such regions are characteristic of gas flows through the gaps of transitional disks. We demonstrate that fitting the PAH spectra of four transitional disks requires a contribution of ionized PAHs in gas flows through the gap. The PAH spectra of transitional disks can be understood as superpositions of neutral and ionized PAHs. For HD97048, neutral PAHs in the optically thick disk dominate the spectrum. In the cases of HD169142, HD135344B and Oph IRS 48, small amounts of ionized PAHs located in the gas flows through the gap are strong contributors to the total PAH luminosity. The observed trend between the disk mass and PAH ionization may imply that lower-mass disks have larger gaps. Ionized PAHs in gas flows through these gaps contribute strongly to their spectra.
Comments: 16 pages, 23 figures, Accepted for publication in A&A
Subjects: Solar and Stellar Astrophysics (astro-ph.SR)
Cite as: arXiv:1402.0902 [astro-ph.SR]
  (or arXiv:1402.0902v1 [astro-ph.SR] for this version)
  https://doi.org/10.48550/arXiv.1402.0902
arXiv-issued DOI via DataCite
Related DOI: https://doi.org/10.1051/0004-6361/201323137
DOI(s) linking to related resources

Submission history

From: Koen Maaskant Koen Maaskant [view email]
[v1] Tue, 4 Feb 2014 22:26:45 UTC (1,474 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps, by K. M. Maaskant and 3 other authors
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
astro-ph.SR
< prev   |   next >
new | recent | 2014-02
Change to browse by:
astro-ph

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack