close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > astro-ph > arXiv:0901.2302

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Astrophysics > Astrophysics of Galaxies

arXiv:0901.2302 (astro-ph)
[Submitted on 15 Jan 2009]

Title:Stochastic self-enrichment, pre-enrichment, and the formation of globular clusters

Authors:Jeremy Bailin, William E. Harris (McMaster University)
View a PDF of the paper titled Stochastic self-enrichment, pre-enrichment, and the formation of globular clusters, by Jeremy Bailin and William E. Harris (McMaster University)
View PDF
Abstract: We develop a model for stochastic pre-enrichment and self-enrichment in globular clusters (GCs) during their formation process. GCs beginning their formation have an initial metallicity determined by the pre-enrichment of their surrounding protocloud, but can also undergo internal self-enrichment during formation. Stochastic variations in metallicity arise because of the finite numbers of supernova. We construct an analytic formulation of the combined effects of pre-enrichment and self-enrichment and use Monte Carlo models to verify that the model accurately encapsulates the mean metallicity and metallicity spread among real GCs. The predicted metallicity spread due to self-enrichment alone, a robust prediction of the model, is much smaller than the observed spread among real GCs. This result rules out self-enrichment as a significant contributor to the metal content in most GCs, leaving pre-enrichment as the viable alternative. Self-enrichment can, however, be important for clusters with masses well above 10^6 Msun, which are massive enough to hold in a significant fraction of their SN ejecta even without any external pressure confinement. This transition point corresponds well to the mass at which a mass-metallicity relationship ("blue tilt") appears in the metal-poor cluster sequence in many large galaxies. We therefore suggest that self-enrichment is the primary driver for the mass-metallicity relation. Other predictions from our model are that the cluster-to-cluster metallicity spread decreases amongst the highest mass clusters; and that the red GC sequence should also display a more modest mass-metallicity trend if it can be traced to similarly high mass.
Comments: 12 pages, accepted for publication in ApJ
Subjects: Astrophysics of Galaxies (astro-ph.GA); Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Cite as: arXiv:0901.2302 [astro-ph.GA]
  (or arXiv:0901.2302v1 [astro-ph.GA] for this version)
  https://doi.org/10.48550/arXiv.0901.2302
arXiv-issued DOI via DataCite
Journal reference: Astrophys.J.695:1082-1093,2009
Related DOI: https://doi.org/10.1088/0004-637X/695/2/1082
DOI(s) linking to related resources

Submission history

From: Jeremy Bailin [view email]
[v1] Thu, 15 Jan 2009 16:27:20 UTC (293 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Stochastic self-enrichment, pre-enrichment, and the formation of globular clusters, by Jeremy Bailin and William E. Harris (McMaster University)
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
astro-ph.GA
< prev   |   next >
new | recent | 2009-01
Change to browse by:
astro-ph
astro-ph.CO

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar

1 blog link

(what is this?)
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack