close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > hep-ex > arXiv:0810.3415

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

High Energy Physics - Experiment

arXiv:0810.3415 (hep-ex)
[Submitted on 19 Oct 2008]

Title:Electron and Photon Identification Performance in ATLAS

Authors:H.J. Kim
View a PDF of the paper titled Electron and Photon Identification Performance in ATLAS, by H.J. Kim
View PDF
Abstract: The understanding of the reconstruction and calibration of electrons and photons is one of the key steps at the start-up of data-taking with ATLAS at the LHC (Large Hadron Collider). The calorimeter cells are electronically calibrated before being clustered. Corrections to local position and energy measurements are applied to take into account the calorimeter geometry. Finally, longitudinal weights are applied to correct for energy loss upstream of the calorimeter. As a last step the Z -> ee events will be used for in-situ calibration using the Z boson mass. The electron identification is based on the shower shape in the calorimeter and relies heavily on the tracker and combined tracker/calorimeter information to achieve the required rejection of 10^5 against QCD jets for a reasonably clean inclusive electron spectrum above 20-25 GeV. For photon identification, in addition to the shower shape in the calorimeter, recovery of photon conversions is an essential ingredient given the large amount of material in the inner tracker. The electron and photon identification methods (cuts and multivariate analysis) will be discussed.
Comments: Poster write-up at ICHEP08, Philadelphia, USA, July 2008. 4 pages, LaTeX, 7 eps figures, 2 rtx files, 1 sty file and 1 cls file
Subjects: High Energy Physics - Experiment (hep-ex); Instrumentation and Detectors (physics.ins-det)
Cite as: arXiv:0810.3415 [hep-ex]
  (or arXiv:0810.3415v1 [hep-ex] for this version)
  https://doi.org/10.48550/arXiv.0810.3415
arXiv-issued DOI via DataCite

Submission history

From: Hyeon Jin Kim [view email]
[v1] Sun, 19 Oct 2008 16:43:57 UTC (23 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Electron and Photon Identification Performance in ATLAS, by H.J. Kim
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
hep-ex
< prev   |   next >
new | recent | 2008-10
Change to browse by:
physics
physics.ins-det

References & Citations

  • INSPIRE HEP
  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack