Skip to main content

Advertisement

Log in

Exploring author gender in book rating and recommendation

  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of these patterns reflect important real-world phenomena driving interactions between the various users and items; other patterns may be irrelevant or reflect undesired discrimination, such as discrimination in publishing or purchasing against authors who are women or ethnic minorities. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to one dimension of social concern, namely content creator gender. Using publicly available book ratings data, we measure the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms tend to propagate at least some of each user’s tendency to rate or read male or female authors into their resulting recommendations, although they differ in both the strength of this propagation and the variance in the gender balance of the recommendation lists they produce. The data, experimental design, and statistical methods are designed to be reusable for studying potentially discriminatory social dimensions of recommendations in other domains and settings as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Documentation and code available at https://bookdata.piret.info.

  2. https://openlibrary.org/developers/dumps.

  3. https://www.loc.gov/cds/products/marcDist.php.

  4. http://viaf.org/viaf/data/.

  5. https://md.ekstrandom.net/pubs/bag-extended.

  6. To reduce the number of zeros, we tuned GoodReads using 1000-item lists instead of 100.

  7. In early iterations of this work, we used broader priors; these vague priors are more in line with current STAN recommendations (see https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations), and do not affect inference conclusions.

  8. This does not accommodate authors with non-binary gender identities. Our goal here is examine the behavior of simple mechanisms supported by available data.

References

  • Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G.: Roles for computing in social change. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA, FAT* ’20, pp. 252–260 (2020). https://doi.org/10.1145/3351095.3372871

  • Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99

    Article  Google Scholar 

  • Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., Rieke, A.: Discrimination through optimization: How facebook’s ad delivery can lead to biased outcomes. Proc ACM Hum-Comput Interact 3(CSCW):1–30 (2019). https://doi.org/10.1145/3359301

  • Bellogin, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems: An algorithmic comparison. In: Proceedings of the Fifth ACM Conference on Recommender Systems, ACM, New York, NY, USA, RecSys ’11, pp. 333–336 (2011). https://doi.org/10.1145/2043932.2043996

  • Beutel, A., Chi, E.H., Goodrow, C., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM Press (2019). https://doi.org/10.1145/3292500.3330745

  • Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of attention: Amortizing individual fairness in rankings. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, ACM, pp 405–414 (2018). https://doi.org/10.1145/3209978.3210063

  • Billey, A., Haugen, M., Hostage, J., Sack, N., Schiff, A.L.: Report of the PCC ad hoc task group on gender in name authority records. Tech. rep., Program for Cooperative Cataloging (2016). https://www.loc.gov/aba/pcc/documents/Gender_375%20field_RecommendationReport.pdf

  • Boise State Research Computing Department: R2: Dell HPC intel e5v4 (high performance computing cluster) (2017). https://doi.org/10.18122/B2S41H

  • Bolukbasi, T., Chang, K.W., Zou, J., Saligrama, V., Kalai, A.: Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In: D D Lee and M Sugiyama and U V Luxburg and I Guyon and R Garnett (ed) Advances in Neural Information Processing Systems 29 (NIPS 2016), Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6227-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings

  • Bucur, D.: Gender homophily in online book networks. Inf. Sci. 481, 229–243 (2019). https://doi.org/10.1016/j.ins.2019.01.003

    Article  Google Scholar 

  • Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Proceedings of the 1st Conference on Fairness, Accountability, and Transparency, PMLR, Proceedings of Machine Learning Research, vol 81, pp. 77–91 (2018). http://proceedings.mlr.press/v81/buolamwini18a.html

  • Burke, R.: Multisided fairness for recommendation. coRR arXiv:1707.00093 [cs.CY] (2017)

  • Burke, R., Sonboli, N., Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided fairness in recommendation. In: Friedler, S.A., Wilson, C. (eds) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, New York, NY, USA, Proceedings of Machine Learning Research, vol 81, pp. 202–214 (2018). http://proceedings.mlr.press/v81/burke18a.html

  • Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: a probabilistic programming language. J. Stat. Softw. 76(1), 1–32 (2017)

    Article  Google Scholar 

  • Celma, O.: Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13287-2

  • Channamsetty, S., Ekstrand, M.D.: Recommender response to diversity and popularity bias in user profiles. In: Proceedings of the 30th Florida Artificial Intelligence Research Society Conference, AAAI Press (2017). https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15524/15019

  • Cosley, D., Frankowski, D., Terveen, L., Riedl, J.: SuggestBot: Using intelligent task routing to help people find work in wikipedia. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, Association for Computing Machinery, New York, NY, USA, IUI ’07, pp 32–41 (2007). https://doi.org/10.1145/1216295.1216309

  • Deshpande, M., Karypis, G.: Item-based Top-N recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004). https://doi.org/10.1145/963770.963776

    Article  Google Scholar 

  • Diaz, F., Mitra, B., Ekstrand, M.D., Biega, A.J., Carterette, B.: Evaluating stochastic rankings with expected exposure. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, ACM (2020). https://doi.org/10.1145/3340531.3411962, arXiv:2004.13157

  • Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ACM, New York, NY, USA, ITCS ’12, pp. 214–226 (2012). https://doi.org/10.1145/2090236.2090255

  • Ekstrand, M., Riedl, J., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum. Comput. Interaction 4(2), 81–173 (2010). https://doi.org/10.1561/1100000009

    Article  Google Scholar 

  • Ekstrand, M.D.: LensKit for Python: Next-Generation software for recommender system experiments. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (2020). https://doi.org/10.1145/3340531.3412778

  • Ekstrand, M.D., Konstan, J.A.: Recommender systems notation. Tech. Rep. 177, Boise State University (2019). https://doi.org/10.18122/cs_facpubs/177/boisestate

  • Ekstrand, M.D., Willemsen, M.C.: Behaviorism is not enough: Better recommendations through listening to users. In: Proceedings of the 10th ACM Conference on Recommender Systems, ACM, New York, NY, USA, RecSys ’16, pp. 221–224, (2016) https://doi.org/10.1145/2959100.2959179

  • Ekstrand, M.D., Tian, M., Azpiazu, I.M., Ekstrand, J.D., Anuyah, O., McNeill, D., Pera, M.S.: All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness. In: Friedler SA, Wilson C (eds) Proceedings of the Conference on Fairness, Accountability, and Transparency (PMLR), PMLR, New York, NY, USA, Proceedings of Machine Learning Research, vol 81, pp. 172–186 (2018). http://proceedings.mlr.press/v81/ekstrand18b.html

  • Ensign, D., Friedler, S.A., Neville, S., Scheidegger, C., Venkatasubramanian, S.: Runaway feedback loops in predictive policing. In: Friedler SA, Wilson C (eds) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, New York, NY, USA, Proceedings of Machine Learning Research, vol 81, pp. 160–171 (2018). http://proceedings.mlr.press/v81/ensign18a.html

  • Epps-Darling, A., Bouyer, R.T., Cramer, H.: Artist gender representation in music streaming. In: Proceedings of the 21st International Society for Music Information Retrieval Conference, ISMIR, pp. 248–254 (2020). https://program.ismir2020.net/poster_2-11.html

  • Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 259–268 (2015). https://doi.org/10.1145/2783258.2783311

  • Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im)possibility of fairness. (2016) arXiv:160907236 [cs, stat]

  • Friedman, B., Nissenbaum, H.: Bias in computer systems. ACM Trans. Inf. Syst. Secur. 14(3), 330–347 (1996). https://doi.org/10.1145/230538.230561

    Article  Google Scholar 

  • Gelman, A., Tuerlinckx, F.: Type S error rates for classical and bayesian single and multiple comparison procedures. Comput. Stat. 15(3), 373–390 (2000). https://doi.org/10.1007/s001800000040

    Article  MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Hierarchical models. In: Bayesian Data Analysis, 3rd edn, CRC Press, pp. 101–138 (2014)

  • Geyik SC, Kenthapadi K (2018) Building representative talent search at LinkedIn. https://engineering.linkedin.com/blog/2018/10/building-representative-talent-search-at-linkedin. Accessed 25 Dec 2018

  • Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Recommender Systems Handbook, Springer, Boston, MA, pp 265–308 (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

  • Hamidi, F., Scheuerman, M.K., Branham, S.M.: Gender recognition or gender reductionism?: The social implications of embedded gender recognition systems. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, ACM, CHI ’18, p 8 (2018). https://doi.org/10.1145/3173574.3173582

  • Hannak, A., Wagner, C., Garcia, D., Strohmaier, M., Wilson, C.: Bias in online freelance marketplaces: Evidence from TaskRabbit. In: Proceedings of the Workshop on Data and Algorithm Transparency (2016). http://datworkshop.org/papers/dat16-final22.pdf

  • Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interactive Intell. Syst. 5(4), 19:1–19:19 (2015). https://doi.org/10.1145/2827872

    Article  Google Scholar 

  • Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., Del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  • Herlocker, J., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp. 230–237 (1999). https://doi.org/10.1145/312624.312682

  • Herlocker, J., Konstan, J.A., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://doi.org/10.1145/963770.963772

    Article  Google Scholar 

  • Hoffmann, A.L.: Data violence and how bad engineering choices can damage society. https://medium.com/s/story/data-violence-and-how-bad-engineering-choices-can-damage-society-39e44150e1d4 (2018). Accessed 5 Jan 2018

  • Hosanagar, K., Fleder, D., Lee, D., Buja, A.: Will the global village fracture into tribes? Recommender systems and their effects on consumer fragmentation. Manag. Sci. 60(4), 805–823 (2013). https://doi.org/10.1287/mnsc.2013.1808

    Article  Google Scholar 

  • Hu, J.C.: The overwhelming gender bias in ’New York Times’ book reviews. (2017) https://psmag.com/social-justice/gender-bias-in-book-reviews. Accessed 5 Dec 2020

  • Hurley, N., Zhang, M.: Novelty and diversity in Top-N recommendation-analysis and evaluation. ACM Trans. Internet Technol. 10(4), 14:1–14:30 (2011). https://doi.org/10.1145/1944339.1944341

    Article  Google Scholar 

  • Hutson, J., Taft, J., Barocas, S., Levy, K.: Debiasing desire: Addressing bias and discrimination on intimate platforms. Proceedings of the ACM on Human-Computer Interaction 2(CSCW):18 (2018). https://doi.org/10.1145/3274342

  • Jannach, D., Lerche, L., Kamehkhosh, I., Jugovac, M.: What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User Adapt. Interaction 25(5), 427–491 (2015). https://doi.org/10.1007/s11257-015-9165-3

    Article  Google Scholar 

  • Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Recommendation independence. In: Friedler SA, Wilson C (eds) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, New York, NY, USA, Proceedings of Machine Learning Research, vol 81, pp. 187–201 (2018). http://proceedings.mlr.press/v81/kamishima18a.html

  • Kibirige, H., Lamp, G., Katins, J., O, A., gdowding, Funnell, T., matthias-k, Arnfred, J., Finkernagel, F., Blanchard, D., Chiang, E., Astanin, S., Kishimoto, P.N., stonebig, Sheehan, E., Gibboni, R., Willers, B., Pavel, Halchenko, Y., smutch, zachcp, Collins, J., Min, R.K., King, B., Brian, D., Arora, D., Brown, D., Becker, D., Koopman, B., Anthony (2019) has2k1/plotnine: v0.6.0. https://doi.org/10.5281/zenodo.3373970

  • Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Model. User Adapt. Interaction 22(4), 441–504 (2012). https://doi.org/10.1007/s11257-011-9118-4

    Article  Google Scholar 

  • Kuprieiev, R., Petrov, D., Valles, R., Redzyński, P., da Costa-Luis, C., Schepanovski, A., Shcheklein, I., Pachhai, S., Orpinel, J., Santos, F., Sharma, A., Zhanibek, Hodovic, D., Earl, Grigorev, A., Dash, N., Vyshnya, G., maykulkarni, Vera, Hora, M., xliiv, Rowlands, P., Baranowski, W., Mangal, S., Wolff, C.: DVC: Data version control - git for data & models. (2020). https://doi.org/10.5281/zenodo.3813759

  • Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender systems. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, SIGIR ’10, pp. 210–217 (2010). https://doi.org/10.1145/1835449.1835486

  • Library of Congress (1999) MARC21 standards. Tech. rep., https://www.loc.gov/marc/

  • Lum, K., Isaac, W.: To predict and serve? Significance 13(5), 14–19 (2016). https://doi.org/10.1111/j.1740-9713.2016.00960.x

    Article  Google Scholar 

  • Magno, G., Araújo, C.S., Meira, W. Jr., Almeida, V.: Stereotypes in search engine results: understanding the role of local and global factors. In: Proceedings of the Workshop on Data and Algorithm Transparency (2016). arXiv:1609.05413

  • McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-Based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, SIGIR ’15, pp. 43–52 (2015). https://doi.org/10.1145/2766462.2767755

  • McKinney, W., Others: Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference, vol 445, pp. 51–56 (2010). http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf

  • Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, ACM, CIKM ’18, pp. 2243–2251 (2018). https://doi.org/10.1145/3269206.3272027

  • Mislove, A., Lehmann, S., Ahn, Y.Y., Onnela, J.P., Rosenquist, J.N.: Understanding the demographics of twitter users. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (2011). https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2816

  • Nguyen, T.T., Hui, P.M., Harper, F.M., Terveen, L., Konstan, J.A.: Exploring the filter bubble: The effect of using recommender systems on content diversity. In: Proceedings of the 23rd International Conference on World Wide Web, ACM, New York, NY, USA, WWW ’14, p 677–686 (2014). https://doi.org/10.1145/2566486.2568012

  • Pajović, V., Vyskocil, K.: 2015 CWILA count methods and results (2016). https://cwila.com/2015-cwila-count-methods-results/. Accessed 5 July 2018

  • Pariser, E.: The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. Penguin (2011)

  • Pilászy, I., Zibriczky, D., Tikk, D.: Fast ALS-based matrix factorization for explicit and implicit feedback datasets. In: Proceedings of the Fourth ACM Conference on Recommender Systems, ACM, New York, NY, USA, RecSys ’10, pp. 71–78 (2010). https://doi.org/10.1145/1864708.1864726

  • Raj, A., Wood, C., Montoly, A., Ekstrand, M.D.: Comparing fair ranking metrics. (2020) coRR arXiv:2009.01311

  • Reback, J., McKinney, W., jbrockmendel, Van den Bossche, J., Augspurger, T., Cloud, P., gfyoung, Sinhrks, Klein, A., Roeschke, M., Hawkins, S., Tratner, J., She, C., Ayd, W., Petersen, T., Garcia, M., Schendel, J., Hayden, A., MomIsBestFriend, Jancauskas, V., Battiston, P., Seabold, S., chris-b, h-vetinari, Hoyer, S., Overmeire, W., alimcmaster, Dong, K., Whelan, C., Mehyar, M.: pandas-dev/pandas: Pandas 1.0.3. (2020). https://doi.org/10.5281/zenodo.3715232

  • Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp. 452–461 (2009). http://dl.acm.org/citation.cfm?id=1795114.1795167

  • Resnick, P.: Beyond bowling together: sociotechnical capital. HCI New Millennium 77, 247–272 (2001)

    Google Scholar 

  • Riederer, C., Chaintreau, A.: The price of fairness in location based advertising. Fairness, Accountability and Transparency in Recommender Systems (2017). http://scholarworks.boisestate.edu/fatrec/2017/1/5

  • Rosenblat, A., Stark, L.: Algorithmic labor and information asymmetries: a case study of uber’s drivers. Int. J. Commun. 10, 27 (2016)

    Google Scholar 

  • Sapiezynski, P., Zeng, W., E Robertson, R., Mislove, A., Wilson, C.: Quantifying the impact of user attentionon fair group representation in ranked lists. In: Companion Proceedings of The 2019 World Wide Web Conference, Association for Computing Machinery, New York, NY, USA, WWW ’19, pp. 553–562 (2019). https://doi.org/10.1145/3308560.3317595

  • Shakespeare, D., Porcaro, L., Gómez, E., Castillo, C.: Exploring artist gender bias in music recommendation. (2020) coRR arXiv:2009.01715

  • Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, KDD ’18, pp. 2219–2228 (2018). https://doi.org/10.1145/3219819.3220088

  • Spalding, T.: Introducing thingISBN (2006). https://blog.librarything.com/thingology/2006/06/introducing-thingisbn/

  • Starke, A., Willemsen, M., Snijders, C.: Effective user interface designs to increase energy-efficient behavior in a rasch-based energy recommender system. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, Association for Computing Machinery, New York, NY, USA, RecSys ’17, pp. 65–73 (2017), https://doi.org/10.1145/3109859.3109902

  • Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, ACM, pp 154–162 (2018). https://doi.org/10.1145/3240323.3240372

  • Thebault-Spieker, J., Hecht, B., Terveen, L.: Geographic biases are ‘born, not made’: Exploring contributors’ spatiotemporal behavior in OpenStreetMap. In: Proceedings of the 2018 ACM Conference on Supporting Groupwork, ACM, pp 71–82 (2018). https://doi.org/10.1145/3148330.3148350

  • Thelwall, M.: Reader and author gender and genre in GoodReads. J. Librarianship Inf. Sci. 51(2), 403–430 (2019). https://doi.org/10.1177/0961000617709061

    Article  Google Scholar 

  • van Alstyne, M., Brynjolfsson, E.: Global village or Cyber-Balkans? modeling and measuring the integration of electronic communities. Manag. Sci. 51(6), 851–868 (2005). https://doi.org/10.1287/mnsc.1050.0363

    Article  MATH  Google Scholar 

  • Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, ACM, New York, NY, USA, RecSys ’11, pp. 109–116 (2011). https://doi.org/10.1145/2043932.2043955

  • VIDA: The 2016 VIDA count | VIDA: Women in literary arts. http://www.vidaweb.org/the-2016-vida-count/. Accessed 5 July 2018 (2017)

  • Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 10 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

  • Wan, M., McAuley, J.: Item recommendation on monotonic behavior chains. In: Proceedings of the 12th ACM Conference on Recommender Systems, ACM, pp 86–94 (2018). https://doi.org/10.1145/3240323.3240369

  • Willemsen, M.C., Graus, M.P., Knijnenburg, B.P.: Understanding the role of latent feature diversification on choice difficulty and satisfaction. User Model. User Adapt. Interaction 26(4), 347–389 (2016). https://doi.org/10.1007/s11257-016-9178-6

    Article  Google Scholar 

  • Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management, Association for Computing Machinery, New York, NY, USA, no. Article 22 in SSDBM ’17, pp 1–6 (2017). https://doi.org/10.1145/3085504.3085526

  • Yao, S., Huang, B.: Beyond parity: fairness objectives for collaborative filtering. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in neural information processing systems 30, pp. 2925–2934. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  • Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: FA*IR: A fair top-k ranking algorithm. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, ACM, CIKM ’17, pp 1569–1578 (2017). https://doi.org/10.1145/3132847.3132938

  • Ziegler, C.N., McNee, S., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, ACM, Chiba, Japan, pp 22–32 (2005). https://doi.org/10.1145/1060745.1060754

Download references

Acknowledgements

We thank Mucun Tian, Mohammed R. Imran Kazi, and Hoda Mehrpouyan for their contributions to the conference paper on which this work builds, and the People and Information Research Team (PIReT) for their support and feedback to help refine this research agenda. Computation performed on the R2 cluster (Boise State Research Computing Department 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Ekstrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Science Foundation under Grant IIS 17-51278. Full code to reproduce this paper’s experiments is available at https://md.ekstrandom.net/pubs/bag-extended.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekstrand, M.D., Kluver, D. Exploring author gender in book rating and recommendation. User Model User-Adap Inter 31, 377–420 (2021). https://doi.org/10.1007/s11257-020-09284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-020-09284-2

Keywords

Navigation